Serological Evidence of Exposure to Rickettsia, Bartonella, and Ehrlichia Species in Healthy or Leishmania infantum-Infected Dogs from Barcelona, Spain

Xavier Roura, DVM, PhD†
Edward Breitschwerdt, DVM‡
Albert Lloret, DVM†
Lluis Ferrer, DVM, PhD‡
Barbara Hegarty, BA†

†Veterinary Teaching Hospital
‡Department of Clinical Sciences and the Vector Borne Disease Diagnostic Laboratory College of Veterinary Medicine
North Carolina State University
Raleigh, NC

KEY WORDS: Canine, serology, co-infections; leishmaniasis.

ABSTRACT

Fifty dogs from the area around Barcelona, Spain, were evaluated for serologic evidence of exposure to vector-borne pathogens. Dirofilaria immitis, Ehrlichia canis, Borrelia burgdorferi, Leishmania infantum, Bartonella vinsonii subspecies berkhoffii, and Rickettsia rickettsii antigens were used for testing purposes. Seroreactivity was determined in 3 different groups of dogs that were categorized based upon their L infantum infection status: uninfected healthy dogs (group 1), L infantum-infected healthy dogs (group 2), and L infantum-infected dogs with clinical manifestations consistent with leishmaniasis (group 3). Of the 50 dogs included in this study, 49 had serologic evidence of exposure to at least 1 organism for which testing was performed. Sera from 1 dog did not react to any test antigen. Seroreactivity was most frequently detected to R rickettsii antigens (41/50) and L infantum antigens (36/50), followed by B vinsonii (berkhoffii) antigens (14/50) and E canis antigens (2/50). No dog’s sera reacted to B burgdorferi C-6 peptide and all D immitis antigen test results were negative. Sera from group 1 (n = 14) were reactive to R rickettsii (n = 13) and B vinsonii (berkhoffii) (n = 2). Sera from group 2 (n = 18) were reactive to R rickettsii (n = 16), B vinsonii (berkhoffii) (n = 5), and to E canis antigens (n = 1). Sera from group 3 dogs that had clinical manifestations of leishmaniasis (n = 18) were seroreactive to R rickettsii (n = 12), B vinsonii (berkhoffii) (n = 7), and E canis (n = 1). This study illustrates the potential for exposure to several vector-borne pathogens in dogs from the Barcelona area. It also indicates that exposure to B burgdorferi or D immitus is infrequent in this dog popula-
tion. The extent to which these dogs might serve as a reservoir or as a transport host for selected vector-borne pathogens is yet to be determined. Based upon these data, exposure to *Rickettsia* and *Bartonella* organisms is relatively common among dogs in the Barcelona area. Therefore, veterinarians should consider co-infection in this highly endemic region for leishmaniasis. Sequential or concurrent infection with vector-borne organisms could induce deleterious alterations in the dog’s immune response, leading to atypical or unusual disease manifestations.

INTRODUCTION

Canine leishmaniasis (CL) is a severe systemic infectious disease of dogs that is caused by protozoan parasites of the genus *Leishmania.* The dog is considered the main peridomestic reservoir of the parasite, which results in zoonotic transmission to humans. When left untreated, leishmaniasis is usually fatal in people and in dogs.\(^1\)\(^-\)\(^5\) CL is endemic in the Mediterranean basin, where the prevalence of infection in dogs can be as high as of 67% of selected populations.\(^5\)\(^,\)\(^6\) Although CL is well recognized in highly endemic regions such as the Mediterranean basin, CL is occasionally diagnosed in nonendemic regions in dogs that have previously lived or have vacationed in endemic locations.\(^7\)\(^,\)\(^8\) Clinical features of leishmaniasis can vary widely in sick dogs or in people as a consequence of organism- or host-specific factors. It is also possible that diversity of disease manifestations associated with leishmaniasis in some individuals is related to co-infection with other vector-borne organisms.\(^9\) Classically described clinical signs of CL are nonspecific and include chronic wasting, weight loss, poor appetite, fever, anemia, non-pruritic alopecia and skin erosions or ulcerations, generalized lymphadenopathy, epistaxis, arthritis, and renal failure.\(^4\)\(^,\)\(^5\)\(^,\)\(^10\)\(^,\)\(^11\)

In recent years an increasing number of publications have described simultaneous infection with another vector-borne pathogen in dogs that had a classical presentation for leishmaniasis. A few published examples include co-infections with *Leishmania* and *Neospora, Ehrlichia, Hepatozoon, Bartonella, Babesia,* or *Dirofilaria (Nochtilla).*\(^12\)\(^-\)\(^17\) For some organisms, the association between the 2 infectious entities occurs with a greater frequency than would be expected based upon the incidence of each respective infection. For instance, an epidemiological study performed in the Campania region of Italy found *Neospora caninum* seroreactivity as a major risk factor for *Leishmania infantum* seroreactivity.\(^12\) Co-infections should be expected in dogs living in areas that are highly endemic for several vector-borne organisms, in dogs that are maintained predominantly outdoors (enhanced vector transmission), and in dogs that are not routinely treated with acaricides or other ectoparasiticides. For example, serological evidence of exposure to multiple vector-borne organisms was recently reported in hunting dogs living outdoors on the island of Mallorca.\(^18\) Although co-infections could occur merely as a function of lifestyle, it is also possible that one or more vector-borne organisms suppress the host immune response to other organisms that would typically be eliminated immunologically. As examples, infection with *L. infantum* can induce suppression of the immune system or promote an abnormal response, and result in an imbalance between helper T-1 and helper T-2 cell responses.\(^19\)\(^,\)\(^20\) Infection with *Bartonella vinsonii (berkhoffii)* can result in CD8\(^+\) lymphocytopenia, impaired monocyteic phagocytosis, and impaired antigen presentation to helper T cells.\(^21\)

Currently, there is limited information regarding the prevalence of many vector-borne infections in dogs residing in specific geographical areas of Europe where leishmaniasis is an endemic infectious disease. Some of the manifestations of leishmaniasis are similar or identical to clinical signs, and hematological and biochemical abnormalities reported in dogs with other vector-borne
infections. Therefore, the primary purpose of this study was to determine if seroreactivity using Erlichia canis, Borrelia burgdorferi, Rickettsia rickettsii, B vinsonii (berkhoffii), or Dirofilaria immitis antigens could be detected in 3 different groups of dogs that varied in their respective L. infantum status (uninfected healthy dogs, L. infantum-infected healthy dogs, and L. infantum-infected dogs with clinical manifestations consistent with leishmaniasis) from the area surrounding Barcelona, Spain.

MATERIALS AND METHODS

Animals
Dogs enrolled into this study were from Barcelona, Spain, or the immediate surrounding area, an area endemic for canine leishmaniasis. Fifty dogs of varying breeds and ages, which were examined at the Veterinary Teaching Hospital of the Autonomous University of Barcelona, were selected for study. All blood collections were performed in January (n = 5), February (n = 12), March (n = 15), April (n = 14), and May (n = 4) of 2000.

With the permission of the owners and prior to obtaining blood samples, all dogs received a complete physical examination, with specific care to detect clinical signs that are compatible with canine leishmaniasis. Regardless of the clinical status of the dog, all dogs were tested for the presence of L. infantum antibodies. Thirty-two healthy dogs were being investigated to eliminate the possibility of L. infantum infection. In endemic areas of Spain, an annual serological screen for L. infantum antibodies is recommended to facilitate early detection and treatment of leishmaniasis. When CL was suspected based upon clinical or laboratory abnormalities, the diagnosis was confirmed by concurrent detection of L. infantum antibodies and the direct cytological observation of the parasite and/or by identification of Leishmania DNA, using a polymerase chain reaction (PCR) test. Based upon the physical examination status (healthy or unhealthy) and the results of cytology, serology, and PCR testing, the dogs in this study were assigned to 1 of 3 groups. Group 1 included 14 healthy dogs that lacked clinical, hematological, biochemical, or serological evidence of L. infantum infection, group 2 consisted of 18 healthy dogs that lacked clinical, hematological, or biochemical abnormalities but had been exposed to and infected with L. infantum based upon serological criteria, and group 3 consisted of 18 L. infantum-infected dogs with disease manifestations compatible with leishmaniasis in conjunction with L. infantum seroreactivity and direct cytological observation of parasite or positive Leishmania PCR test results.

Sampling
Blood was collected by cephalic or jugular venipuncture. Serum samples were stored at –20°C until used for the detection and quantification of organism-specific antibodies. For some dogs, both ethylenediaminetetraacetic acid (EDTA)-anti-coagulated blood and bone marrow samples were submitted for L. infantum PCR testing. Following sedation, bone marrow aspiration samples were obtained from the costochondral junction using a 22-gauge needle.

Serology
All sera were screened for D. immitis antigen, E canis antibodies (P30 and P31 outer membrane proteins), B. burgdorferi (C6 peptide), and L. infantum with 2 commercial assay kits (Canine SNAP 3DX Test and SNAP Leishmania Test, IDEXX Laboratories, Westbrook, Maine, USA).

Immunofluorescence. B. vinsonii (berkhoffii) 93-CO-1 and R. rickettsii North Carolina State University (NCSU) Domino strain were cultivated in Vero cells and harvested when cells were more than 80% infected (2 to 9 days postinoculation). The decision to use R. rickettsii was based upon antigen availability in the US laboratory in which testing was performed rather than a more appropriate endemic antigen such as R. conori. Cross-reactivity between the 2 spotted fever group antigens has long been recognized.22,23 Antigen for immunofluorescent
antibody (IFA) was prepared by pelleting and resuspending microorganisms and cells in phosphate buffered solution (PBS). Antigen was applied to 30-well Teflon-coated slides (Cell-line Associates, Newfield, NJ, USA) in 3.0-μL aliquots and air dried. Slides were fixed in acetone for 10 minutes and frozen at -20°C until use.

Three 2-fold serial dilutions of sera (1:16, 1:32, 1:64) in PBS-0.05% Tween 20 (T)/0.5% dried skimmed milk(M)/1% goat serum (G) (TMG) were made in microtiter plates. Ten microliters of each dilution was applied per well, and slides were incubated at 37°C for 30 minutes, washed in PBS with agitation for 30 minutes, and air dried. Fluorescein-conjugated goat anti-dog immunoglobulin (ICN Pharmaceuticals, Costa Mesa, CA, USA) was diluted 1:100 in PBSTMG, filtered with a 0.22-μm filter and applied to each well. Slides were incubated for 30 minutes at 37°C and washed again in PBS-0.05% Tween 20 (PBST) with agitation for 30 minutes, rinsed with distilled water, air dried, cover-slipped using mounting medium (90% glycerol and 10% PBS, pH 9.0) and viewed with a fluorescence microscope (magnification, X40). Samples with an IFA titer > 1:32 were retested with serial dilutions from 1:16 to 1:8192. Endpoint titers were determined as the last dilution at which brightly stained organisms could be detected on a fluorescence microscope with exciter and barrier filters. A reactive serum was defined as a titer of ≥ 1:64. Reactive sera (titers 1:1024) from dogs experimentally infected with B vinsonii (berkhoffii) or R rickettsii and a non-reactive serum from a specific pathogen-free (SPF) dog were used as positive and negative controls for all IFA testing.

L infantum Enzyme-linked Immunosorbert Assay. An enzyme-linked immunosorbert assay (ELISA) was performed as previously described. Briefly, microtiter plates were coated with a 20-μg mL⁻¹ concentration of *L infantum* antigen in 0.1 mL of coating buffer (0.1 M carbonate-bicarbonate, pH 9.6) and incubated overnight at 4°C. One hundred microliters of dog sera per well was diluted 1:400 in PBST-1% dried skim milk and was incubated for 1 hour at 37°C. After washing 3 times with PBST and once with PBS, 100 μL of anti-dog immunoglobulin G (IgG) (1:20,000) conjugated horse-radish peroxidase (ortho-phenylene-diamine solution, Sigma-Aldrich, St. Louis, MO, USA) was added. This conjugate was incubated for 1 hour at 37°C, and the plates were rewash. The substrate solution (0.4 mg/mL) and H₂O₂ (0.4 μL/mL) in 0.1 M of phosphate-citrate buffer (pH 5.0) was added at 200 μL/well and developed for 20 minutes at 24°C. The reaction was stopped with 50 μL of H₂SO₄ 3M. Absorbance was read at 490 nm in an automatic microELISA reader (EL 312 microplate, Bio-tek Instruments, Winooski, Vermont, USA).

Sera from 28 dogs not infected with *L infantum* that were living in a region where the disease is endemic were tested to determine a cut-off for IgG-specific ELISA determinations. The cut-off absorbance was established as the mean plus 3 standard deviations (SD), resulting in 0.236 for IgG (mean 0.099, SD 0.0456). All determinations included the serum from a sick dog with confirmed *L infantum* infection as positive control and the serum from a healthy dog as a negative control.

DNA Isolation

DNA was obtained from 0.5 mL of bone marrow aspirate or peripheral blood. Samples were washed in Tris(hydroxy-methyl)-aminomethane-EDTA buffer (pH 8.0) to disrupt the erythrocyte membrane until the leukocyte pellet was white. Leukocytes were then lysed by incubation of the pellet in 0.1 mL of Proteinase K buffer [50 mM KCl, 10 mM Tris (pH 8.0), 0.5% Tween-20] at 56°C for 5 hours. Before running the PCR, proteinase K was inactivated by incubation of the samples at 90°C for 10 minutes. DNA was diluted 1/5 in milliQ water and 5 μL were used for PCR.

L infantum PCR Amplification

PCR was performed as previously described. Briefly, *Leishmania*-specific
Analyzable Animal Testing

Results

Characteristics of Dogs
formed (Table 1). Serum from 1 dog did not react to any test antigen. Seroreactivity was most frequently detected to *R. rickettsii* antigens (41/50) and *L. infantum* antigens (36/50), followed by *B. vinsonii* (berkhoffii) antigens (14/50) and *E. canis* antigens (2/50). No dog’s serum reacted to *B. burgdorferi* C-6 peptide and all *D. immitis* antigen test results were negative. Serum from group 1 [healthy dogs lacking clinical and serological evidence of *L. infantum* infection (n = 14)] were reactive to *R. rickettsii* (n = 13) and *B. vinsonii* (berkhoffii) (n = 2). Serum from group 2 [healthy dogs infected by *L. infantum* (n = 18)] were reactive to *R. rickettsii* (n = 16), *B. vinsonii* (berkhoffii) (n = 5), and to *E. canis* antigens (n = 1). Serum from group 3 dogs that had clinical manifestations of leishmaniasis was seroreactive to *R. rickettsii*, *B. vinsonii* (berkhoffii), and *E. canis*.

<table>
<thead>
<tr>
<th>Group 1 (n = 14)</th>
<th>Group 2 (n = 18)</th>
<th>Group 3 (n = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. canis</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>R. rickettsii</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>B. vinsonii</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

*Serum from group 1 (healthy dogs lacking clinical and serological evidence of *L. infantum* infection) was reactive to *R. rickettsii* and *B. vinsonii* (berkhoffii). Serum from group 2 (healthy dogs infected by *L. infantum*) was reactive to *R. rickettsii*, *B. vinsonii* (berkhoffii), and to *E. canis* antigens. Serum from group 3 dogs that had clinical manifestations of leishmaniasis was seroreactive to *R. rickettsii*, *B. vinsonii* (berkhoffii), and *E. canis*.

Table 3. Reciprocal Immunofluorescence Antigen Testing (IFA) of * Bartonella vinsonii* (berkhoffii) Antibody Titers in Healthy or Sick Dogs from Barcelona, Stratified by *Leishmania* Infection Status at Time of Examination

<table>
<thead>
<tr>
<th>IFA Antibody Titers</th>
<th>Group 1 (n = 14)</th>
<th>Group 2 (n = 18)</th>
<th>Group 3 (n = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td><64</td>
<td>12</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>64</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

*Serum from group 1 (healthy dogs lacking clinical and serological evidence of *L. infantum* infection) was reactive to *R. rickettsii* and *B. vinsonii* (berkhoffii). Serum from group 2 (healthy dogs infected by *L. infantum*) was reactive to *R. rickettsii*, *B. vinsonii* (berkhoffii), and to *E. canis* antigens. Serum from group 3 dogs that had clinical manifestations of leishmaniasis was seroreactive to *R. rickettsii*, *B. vinsonii* (berkhoffii), and *E. canis*.

DISCUSSION

Through blood smear examination and serologic testing, substantial evidence of vector-borne diseases was found in the dogs studied. It is notable that 98% (49 of 50) of the dogs in this study were seroreactive for at least 1 organism for which ELISA or IFA testing was performed. Although the entry
Table 4. Antibody Reactivity to Various Test Antigens Stratified According to Gender, Age, Breed, and Date of Blood Collection

<table>
<thead>
<tr>
<th>Dogs</th>
<th>Leishmania infantum</th>
<th>Rickettsia rickettsii</th>
<th>Bartonella vinsonii (berkhoffii)</th>
<th>Erlichia canis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>36</td>
<td>41</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Male</td>
<td>23</td>
<td>26</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>13</td>
<td>15</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>>2–4</td>
<td>2</td>
<td>15</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>>4–6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>>6–11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mixed breed</td>
<td>8</td>
<td>28</td>
<td>14</td>
<td>27</td>
</tr>
<tr>
<td>Pure breed</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>January</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>February</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>March</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>April</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>May</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

criteria for this study purposefully created a selection bias for the detection of vector-borne pathogens in dogs from a leishmaniasis-endemic area, the overall seroprevalence in this population was high, suggesting that canine exposure to vector-borne organisms in the Barcelona area is extensive.

The results of this study indicate that a seroprevalence study involving a random sample of dogs from this area should be performed in the future. Among dogs in group 3, clinicopathologic abnormalities were nonspecific and highly variable, which is consistent with canine leishmaniasis in an endemic area.4,5

In this study 82% (41 of 50) of dogs were seroreactive to R rickettsii, of which 34 had reciprocal titers ≥128 (16 were 128, 10 were 256, 5 were 512, and 3 were 1024). This finding presumably represents serologic evidence of canine exposure to a Rickettsia species endemic to the Barcelona area.

Seroreactivity to R rickettsii antigens did not differ statistically among the 3 different study groups (P = 0.107). Cross-reactivity of varying degrees has been reported among spotted fever group and typhus group rickettsiae.22,23,27 Accordingly, Rickettsia species cannot be reliably determined through serological testing. Seroreactivity to R conorii has been documented in people in Barcelona area and more recently in dogs from the same area.28,29,30

Detection of Rickettsia antibodies in otherwise healthy dogs is not completely unexpected, because many Rickettsia species induce acute, potentially self-limiting infection in dogs, and rickettseemia clears rapidly after treatment with a number of antibiotics.31,32 In this study, there was a lack of a seasonal association with Rickettsia antibody titers during winter and spring months, as has been described in previous studies of dogs in the same geographic area.28,29 This observation would argue against an acute infection as a cause of the Rickettsia antibodies detected in these studies.

Fourteen of 50 (38%) samples of dog sera were reactive at reciprocal titers ≥ 64 to B vinsonii (berkhoffii) antigens. This was an unexpected finding, since seroprevalence to this organism is usually much lower, in both sick and healthy dogs. Previous studies have detected lower Bartonella seroprevalences (3%) in dogs from the United Kingdom.33,34 There was no statistical association between the presence of clinical signs and the detec-
tion of *B vinsonii* (berkhoffii) antibodies (*P* = 0.187). However, due to low number of both sick and healthy dogs included in this study, the potential pathogenic role of this organism should be investigated in future studies involving dogs from the Barcelona area.

Although seemingly variable results have been reported from different laboratories, there can be serological cross-reactivity between *E canis* and other *Ehrlichia* species and *Anaplasma* species antigens. Therefore, dog sera that are reactive to *E canis* may in fact represent exposure to other *Ehrlichia* or *Anaplasma* species. In this study using a commercially available ELISA test, only 4% of the dogs surveyed were seroreactive to *E canis* antigens. Both of the *E canis* ELISA-positive dogs had been exposed to *L infantum*.

This study illustrates the potential for exposure to several vector-borne pathogens in dogs from the Barcelona area. It also indicates that exposure to *B burgdorferi* or *D immitus* is infrequent in this dog population. The extent to which these dogs might serve as a reservoir or as a transport host for the selected vector-borne pathogens is yet to be determined. Studies that incorporate pathogen isolation or PCR detection of organism-specific DNA will be necessary to clarify the extent to which antibody detection reflects prior or active infection. Based upon these data, exposure to *Rickettsia* and *Bartonella* organisms is relatively common among dogs in the Barcelona area. Therefore, regional veterinarians, who are very familiar with leishmaniasis, should consider the possibility of co-infection. Sequential or concurrent infection with vector-borne organisms could induce deleterious alterations in the dog’s immune response, leading to atypical or unusual disease manifestations. Future seroepidemiological studies incorporating a larger population of dogs or molecular-based studies will be required to elucidate the immunopathogenic role of other vector-borne organisms in dogs living in *L infantum*-endemic regions.

Acknowledgments

We wish to thank IDEXX Laboratories Inc (Westbrook, ME, USA) for the donation of the SNAP DX test kits, and Julie Bradley for performing the serological testing.

REFERENCES

