Rapid Detection of *Salmonella* on Commercial Carcasses by Using Isothermal and Chimeric Primer-Initiated Amplification of Nucleic Acids (ICAN)-Enzyme-Linked Immunosorbent Assay (ELISA) in Zambia

Emiko Isogai, DVM¹
Manda Silungwe²
Patson Sinkala³
Carol Chisenga²
Charles Mubita²
Michelo Syakalima, DVM³
Bernard Mudenda Hang’omboeb, DVM³

Chitwambi Makungu, DVM³
John Yabe, DVM³
Martin Simuunzab, DVM³
Andrew Nambota, DVM³
Hiroshi Isogai, DVM³
Hideto Fukushima, DVM³
Jun Yasuda, DVM³

¹Department of Preventive Dentistry
Health Sciences University of Hokkaido
Hokkaido, Japan

²School of Veterinary Medicine
University of Zambia
Lusaka, Zambia

³Institute of Animal Experimentation
Sapporo Medical University
Sapporo, Japan

KEY WORDS: *Salmonella*, isothermal and chimeric primer, enzyme-linked immunosorbent assay (ELISA), Zambia

ABSTRACT

Salmonella infections in human population belong to the most important foodborne zoonoses in the world. Therefore, studies on rapid methods for detection of *Salmonella* in animal-derived foods and ready-to-eat-foods are needed. We describe a 2-step method using isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) to amplify the *Salmonella invA* and detecting the amplified product using an enzyme-linked immunosorbent assay (ELISA) from rinsed carcass samples in Zambia, Southern Africa. With ICAN-ELISA, *Salmonella* was detected in 20/24 samples (83.3%) from chicken carcass rinses and 4/6 (66.7%) samples from cattle carcass rinses. Contamination of chicken carcasses with *Salmonella* could be associated with the market style in Zambia.
ICAN-ELISA is a rapid and effective approach for the detection and survey of Salmonella contamination in markets.

INTRODUCTION
Salmonella species cause a variety of human diseases ranging from gastroenteritis to systemic infection. It has been considered that contamination of carcasses may occur through a chain involving production through consumption. The introduction of Salmonella into the food chain appears to be manifested by early exposure of domestic animals (including poultry) to the organism that results in long-term persistent infections. In Zambia, the detection of salmonellas in chickens, eggs, and cattle is documented.

Salmonellosis in Zambia has stimulated renewed interest in Salmonella and food safety by encompassing meat processors, consumers, and the government. For detection of Salmonella, a combination of serologic tests and bacteriologic confirmation has been done in this country. Presently, there is a need for a sensitive non-cultural detection of the pathogen in Zambia. It has been reported that polymerase chain reaction (PCR) for the specific detection of Salmonella is evaluated targeting an invA gene. Isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) targeting invA has been developed as an innovative method for DNA amplification that is performed at a constant temperature. The detection was performed by an enzyme-linked immunosorbbent assay (ELISA). ICAN may offer an alternative method to PCR that requires cycles of different temperature to amplify DNA. The system is a commercially available detecting system without requiring a PCR machine. In this study, we tried ICAN-ELISA to screen invA from poultry and beef carcasses of various markets in Zambia. Market style may be one of the risk factors of contamination of the organisms in developing countries such as Zambia.

MATERIALS AND METHODS
The chicken and cattle carcasses were sampled from various markets in Lusaka, Zambia. Prepacked carcasses (frozen) were divided from the largest processing plant in Lusaka. A part of prepacked carcasses (cool) were repacked as a small mass of carcasses. Prepacked and repacked carcasses were under controlled temperature. In contrast, a meat stand without temperature control is a traditional style in Zambia.

Twenty-five grams were sampled aseptically and rinsed in 50 mL phosphate buffer solution (PBS). The rinse solution was used for the origin of culture and ICAN. The rinse solution (0.1 or 0.2 mL) was cultured directly on Salmonella Shigella (SS) agar for 24 hours at 37°C. The identity of suspected Salmonella isolates was confirmed by standard method. When primary culture was negative, 1 mL rinse solution was inoculated into 9 mL brain heart infusion (BHI) liquid medium, cultivated for 24 hours at 37°C. The secondary culture was inoculated on SS agar for 24 hours at 37°C.

For DNA extraction from rinse solution, 40 mL was centrifuged at 5000 rpm for 20 minutes; precipitate was re-suspended in 1 mL of distilled water and heated at 95°C for 10 minutes. After centrifugation at 15,000 rpm for 10 minutes, the supernatant was used for DNA extraction.

ICAN was done by using TaKaRa ICAN (Salmonella Detection Kit-ELISA version, Takara Bio Co. Ltd, Kyoto, Japan). Briefly, invA gene in sample (5 μL) was amplified in reaction-mixture (20 μL) containing enzyme mix and primer mix at 58°C for 60 minutes in a water bath. The ICAN product was used as a source of amplified invA. In the detection of ICAN products by ELISA, the ICAN amplification products (5 μL) plus 50 μL hybridization buffer were added to 2 wells of a streptavidin-coated 96 well-plate. After incubation for 15 minutes at room temperature, the denaturing regent (10 μL) was added to each well and incubated for 3 minutes. A detection probe
or an internal probe (100 µL) was added to the wells and incubated for 15 minutes. After washing, peroxidase (POD)-conjugated antibody (100 µL) was added to the wells and incubated for 20 minutes. Substrate solution (TMBZ, 100 µL) was added after washing. After 10 minutes, a stop solution (100 µL) was added and optical density (OD) was read with an ELISA reader.

Modified PCR based on the method of Rahn et al. was used for repacked and cooled chicken carcasses, to compare with the result of ICAN-ELISA. Briefly, the invA gene was amplified by PCR with primers 139:GTG AAA TTA TCG CCA CGT TCG GGC AAA and 141:TCA TCG CAC CGT CAA AGG AAC C. The specimens (2 µL) were diluted with 8 µL of PCR buffer containing 10 mM Tris (pH 8.4), 50 mM KCl, 1.5 mM MgCl₂, and 0.01% gelatin. The diluted specimens were heated at 94°C for 10 minutes and then kept at 80°C for another 30 minutes. The PCR mixture was directly added to heat-treated specimens so that they contained 0.25 mM each deoxynucleoside triphosphate, 1mM each primer, and 0.5 U of Taq DNA polymerase in a total volume of 20 µL. The PCR amplification condition was 94°C (1 min), 55°C (1 min), and 72°C (1 min) for 35 cycles. The amplified DNA fragment was analyzed by 1% agarose gel electrophoresis. With this system, a DNA fragment of 284 bp was amplified in samples containing strains of Salmonella species. The corresponding DNA fragment was not amplified in samples containing the other bacteria such as Escherichia coli.

The 5 Salmonella strains used as positive control in this study were originated from chicken carcasses in Zambia. The E. coli (5 strains) were used as negative controls. These bacteria were cultured in BHI agar for 24 hours at 37°C. A small amount of bacteria (10⁷–10⁹) was inoculated into distilled water and heated at 95°C for 10 minutes. After centrifugation at 15,000 rpm for 5 minutes, supernatant was used as DNA sample.

RESULTS

We examined 30 carcass rinse samples from 10 areas in Lusaka, Zambia. Table 1 shows invA-positive rates using ICAN-ELISA detection. The invA-positive chicken carcasses were 66.7% (prepacked and frozen), 90.9% (repacked and cooled), and 100.0% (non-packaged and no temperature control). The invA-positive cattle carcasses were 66.7% (prepacked and cooled) and 100.0% (non-packaged and no temperature control). From a salty sausage (cooled), no Salmonella was detected. With ICAN-ELISA, Salmonella was detected in 20/24 (83.3%) chicken carcass rinses and 4/6 (66.7%) cattle carcass rinses, without the utilization of an enrichment step. From positive samples of ICAN-ELISA, viable

<table>
<thead>
<tr>
<th>Carcass</th>
<th>Sale Style of Market</th>
<th>Total Examined</th>
<th>Detection of Salmonella invA by ICAN (%)</th>
<th>Positive Number of Primary Culture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>Prepacked and frozen</td>
<td>9</td>
<td>6 (66.7)</td>
<td>1 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Repacked, cool</td>
<td>11</td>
<td>10 (90.9)</td>
<td>5 (45.5)</td>
</tr>
<tr>
<td></td>
<td>Non packaged and no</td>
<td>4</td>
<td>4 (100.0)</td>
<td>4 (100.0)</td>
</tr>
<tr>
<td></td>
<td>temperature control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>Repacked, cool</td>
<td>3</td>
<td>2 (66.7)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td></td>
<td>Non packaged and no</td>
<td>2</td>
<td>2 (100.0)</td>
<td>2 (100.0)</td>
</tr>
<tr>
<td></td>
<td>temperature control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sausage, cool</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>24 (80.0)</td>
<td>13 (43.3)</td>
</tr>
</tbody>
</table>
Salmonella was isolated from secondary culture, even if the bacterium could not be isolated from primary culture.

Thirteen samples were Salmonella-positive in ICAN-ELISA and primary culture (Group 1: ICAN+, Culture+), and 11 samples were Salmonella-positive in ICAN-ELISA (Group 2: ICAN+, Culture−). Group 3 (ICAN−, Culture−) showed negative results in both tests. As shown in Figure 1, the OD ± SD in ICAN-ELISA was 2.190 ± 0.580 in Group 1, 1.059 ± 0.430 in Group 2, and 0.091 ± 0.046 in Group 3. There were significant differences of OD in ICAN-ELISA among the 3 groups (unpaired t-test, P < 0.05).

Standard PCR showed 5/11 (45.5%) samples from repacked and cooled chicken carcass. These samples also showed positive results of ICAN-ELISA and primary culture. ICAN-ELISA could detect invA when standard PCR showed negative results.

DISCUSSION

ICAN-ELISA is a rapid and effective approach for the detection and survey of Salmonella contamination in markets. The invA-positive rate of prepacked and frozen chickens was 66.7%. The percentage of ICAN-ELISA was higher than that of standard culture method. It has been reported that standard PCR products can be detectable in ELISA with increased sensitivity by 1,000-fold for bacterial cultures and 100-fold for Salmonella over that of gel-based PCR. Our results showed that a combination method, ICAN and ELISA, is highly sensitive.

Acceptable microbiological quality of ready-to-eat foods is important for food hygiene. Poor microbiological quality in Zambia has been associated with preparation on the premises, premises type, and little or no confidence in the food business management, especially food hygiene and local authority inspector’s confidence. Even in such an environment, it is possible to manage temperature control and to avoid human-human cross contamination. Hollingsworth and Kaplan state that current and future advances applicable to a farm-to-table prevention concept should persist and continually be explored.

The present study has confirmed contamination of chicken carcasses with Salmonella in Zambia. This finding could be utilized in further epidemiological studies.

ACKNOWLEDGMENTS

Our study was supported in part by research grant No. 15255021 from the International Scientific Research Program from the Ministry of Education, Science and Culture, Japan.

REFERENCES

